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X. On the Mathematical Theory of Stream-lines, especially those with four Foci and
upwards. By WiLLiAM JoEN MacQuorN Ranxing, C.E., LL.D., F.R.SS. Lond.
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Introduction.

§ 1. Object and Occasion of this Investigation.—A Stream-line is the line that is traced
by a particle in a steady current of fluid. Each individual stream-line preserves its figure
and position unchanged, and marks the track of a filament or continuous series of par-
ticles that follow each other. The motions in different parts of a steady current may be
represented to the eye and to the mind by means of a group of stream-lines; for the
direction of motion of a particle at a given point is that of a tangent to the stream-line
which traverses that point; and when the fluid is of constant density, as is sensibly the
case with liquids, the comparative velocities at different points are indicated by the com-
parative closeness of the stream-lines to each other. Even when the fluid is gaseous,
the comparative mass-velocities are indicated by the closeness of the stream-lines—the
term mass-velocity meaning the mass which traverses a unit of area in a unit of time.
Gaseous fluids, however, will not be considered in the present paper. '

Stream-lines are important in connexion with naval architecture; for the curves
which the particles of water describe relatively to a ship, in moving past her, are stream-
lines; and if the figure of a ship is such that the particles of water glide smoothly over
her skin, that figure is a stream-line surface*, being a surface which contains an indefi-
nite number of stream-lines. The stream-lines of a curent gliding past a circular
cylinder in a direction transverse to its axis, and also those of a current gliding past a
sphere, have long been known. '

In a paper entitled “ On Plane Water-lines in two Dimensions,” read to the Royal

Society in 1863, and published in the Philosophical Transactions, I have given a detailed

* Note added December 1870.—This limitation is necessary in speaking of the figures of ships ; for although
every surface is a possible stream-line surface, the surface of a ship is not even approximately an actual stream-
line surface unless it is such that she does not drag along with her a mass of eddies of such volume and shape
as to cause the actual tracks of the particles of water to differ materially in form from those which would be
described in the absence of eddies. The surfaces which fulfil this condition are what are called by shipbuilders
“fair” surfaces; and their forms have in a great many cases been determined by practical experience. In
order to determine, at all events approximately, the actions of such surfaces on the water, it is necessary to be
able to construct them by geometrical rules based on the principles of the motion of fluids ; and - the methods
described in this paper afford the means of doing so.—W. J, M. R,
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268 PROFESSOR W. J. MACQUORN RANKINE ON THE

investigation of the mathematical properties of a very extensive class of stream-lines,
representing the motions of particles of water in layers of uniform thickness. Those
stream-lines closely resemble the water-lines, riband-lines, and other longitudinal sections
of ships of a great variety of forms and proportions; and there is scarcely any known
figure of a fair longitudinal line on a ship’s skin to which an approximation may not be
found amongst them; hence I have proposed to call them Neoids; that is, ship-shape
lines.

In the Philosophical Magazine for October 1864, was published a paper which had
been read by me to the British Association, containing a summary of the properties of
some additional kinds of stream-lines, some in two, and others in three dimensions, and
of those stream-lines in particular which generate stream-line surfaces of revolution.
All these stream-lines also are neoids, or ship-shape curves.

All the neoid stream-lines before mentioned are either wnifocal or bifocal; that is to
say, they may be conceived to be generated by the combination of a uniform progres-
sive motion with another motion consisting in a divergence of the particles from a cer-
tain point or focus, followed by a convergence either towards the same point or towards
a second point. Those which are continuous closed curves, when unifocal are circular,
and when bifocal are blunt-ended ovals, in which the length may exceed the breadth
in any given proportion—for example, the curves marked L B in figs. 2, 3 & 4, Plate
XV. To obtain a unifocal or bifocal neoid resembling a longitudinal line of a ship
with sharp ends, such as A, fig. 1, it is necessary to take a part only of a stream-line,
and then there is discontinuity of form and of motion at each of the two ends of that
line.

The occasion of the investigation described in the present paper was the communi-
cation to me by Mr. WiLLiam Froupk of some results of experiments of his on the re-
sistance of model boats, of lengths ranging from 3 to 12 feet. A summary of those re-
sults is published at the end of a Report to the British Association, “On the State of
Existing Knowledge of the Qualities of Ships.” In each case two models were com-
pared togethermof equal displacement and equal length; the water-line of one was a
wave-line, as at A (Plate XV. fig. 1), with fine sharp ends; that of the other had blunt
rounded ends, as at B—suggested, Mr. FRoUDE states, by the appearance of water-birds
when swimming. At low velocities, the resistance of the sharp-ended boat was the
smaller; at a certain velocity, bearing a definite relation to the length of the model, the
resistances became equal; and at higher velocities the round-ended model had a rapidly
increasing advantage over the sharp-ended model.

Hence it appeared to me to be desirable to investigate the mathematical properties of
stream-lines resembling the water-lines of Mr. Froupr’s bird-like models; and I have
found that endless varieties of such forms, all closed curves free from discontinuity of
form and of motion, may be obtained by using four foci instead of two. They may be
called, from this property, quadrifocal stream-lines, or, from the idea that suggested
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such shapes to Mr. FRoUDE, Cycnoids, or swan-like lines; while the stream-lines in
which particles of liquid flow past them may be said to be Cycnogenous*.

Cuapter 1. Summary of Cinematical Principles.

0 2. Normal Surfaces to Stream-lines in a Liquid. (For details on this part of the
subject, see STOKES “ On the steady Motion of an Incompressible Fluid,” Cambridge
Transactions, 1842; also RANKINE ¢ On Plane Water-lines in Two Dimensions,” Philo-
sophical Transactions, 1863.)—Let a perfectly liquid mass of indefinite extent flow
past a solid body in such a manner that, as the distance from the solid body in any di-
rection increases without limit, the motion of the liquid particles approaches indefinitely
to uniformity in velocity and direction. ILet w, v, and w be the rectangular components
of the velocity of any particle; then the condition of constant density requires that the
following equation should be fulfilled,

du dv  dw
%—l—@—l—%:o; . . . . . - . . . . . . (1)

and the condition of perfect fluidity being combined with that of the approximation to
uniformity of motion at an indefinite distance requires that the three following equations

should be fulfilled :

dv  dw dw du du dv o
B—n=0 pog=0s E=T=0. . ..

These four conditions are fulfilled by making

_fdo.  _do  _do,

the velocity-function, ¢, being a function which fulfils the condition

az , d>  d?

<d—w‘a+gy—e+fze)¢:0. P €3
The equation

¢p=a (aconstant). . . . . . . . . . . . . . (9

is that of a surface of equal action, which is normal to the direction of motion of every
particle that it traverses; in other words, it is normal to all the stream-lines that it cuts.
If a series of different values be given to the constant a, the equation (5) represents a
series of such normal surfaces; and every stream-line is a normal trajectory to that series
of surfaces. In symbols, let ds' denote an elementary arc of a stream-line, and 2/, ¢/,
and 2' the coordinates of a fixed point in it, those coordinates being regarded as functions

* Kukvoediis, kvkvoyeviis. It is to be observed that the swan-like curves here described are different from
the lines of the vessel which some years ago was built from the designs of Mr. Pracocx, and described in the
Mechanics’ Magazine; for the lines of that vessel are oval, and approximate to bifocal neoids, and are wholly
without the peculiarly shaped ends that characterize Mr. FrounE’s cycnoid models.

2pr2
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of §'; then we have

df  dy d
d_ai_dl oL (6)
dp dp dp
dz  dy de.

In short, the stream-lines bear the same relation to the normal surfaces that lines of
force bear to equipotential surfaces.

Let the axis of « be taken parallel to the direction of the uniform motion of the par-
ticles at an indefinitely great distance from the origin of coordinates, near to which the
solid body is supposed to be situated ; and let the velocity of that uniform current be
taken as the unit of velocity, so that , v, and w shall represent the ratios of the three
components of the velocity of a particle to the velocity at an indefinite distance. Then,
when either &, y, or z is indefinitely great, we have

u=1; v=0; w=0;
and it is evident that the velocity-function must be of the following form,
p=z+¢, . . « .« . . . ... (D

in which ¢, is a function that vanishes when #, g, or z increases indefinitely. The term
x gives, by its differentiations, the expression of a uniform straight current, of the velo-
city 1. The term ¢, gives, by its differentiations, the three components of the disturé-
ance of the velocity from that of the uniform current. Hence, if we suppose the water
at an indefinite distance from the disturbing solid to be still, and the solid to move
parallel to the axis of & with the velocity —1, the following coefficients,

do, de, do,

dz’ dy’ dz’
will represent the components of the velocity of a particle relatively to still water.

§ 8. Stream-line Surfaces in general—For some purposes a more convenient way of
expressing the properties of stream-lines is, to consider the system of stream-lines in a
steadily moving current of liquid as the intersections of two sets of surfaces called stream-
line surfaces, represented by the two sets of equations

Y=b; x=¢, . . . . . . . . . . . (8

where & and ¢ are constants, each of which receives a series of different values. Each
set of surfaces divides the space in which the current flows into a series of indefinitely
thin layers; and the two sets of surfaces divide that space into a series of indefinitely
slender elementary streams*, which are conceived to be of equal flow. The uniform
current at an indefinite distance from the disturbing solid being, as before, parallel to z,
and of the velocity 1, let the transverse area of an elementary stream at an indefinite
distance be denoted by o; the same symbol denotes the volume of the flow in each unit
of time along that stream, and therefore along every elementary stream. The areas of
* Note added June 1871.—Called by Crerx MaxweLL ¢ unit-tubes.”



MATHEMATICAL THEORY OF STREAM-LINES. 271

the three sections of an elementary stream, made at a given point by three planes parallel
to the three coordinate planes respectively, have the following values:

parallel to yz, _W
dy dz” dz dy

and symmetrical expressions for those parallel to zz and to 2y respectively.

The three components of the velocity of an elementary stream at a given point are to
be found by dividing the volume of flow by the areas of those three sections respectively ;
hence those components are as follows :—

A

— 0l 0 LY e

(and symmetrical expressions for v and w).

The third member of the equation is introduced in order to show the relations between
the stream-line functions ¢ and y, and the velocity-function ¢.

It is easily ascertained that the preceding values of w, v, and w fulfil the condition of
constant density (equation 1); also that the surfaces of equal action (¢=a) cut the
stream-line surfaces at right angles, as expressed by the following equations:

dy dp  dy dp  d¥ dgo

dz dw+q’y + "'0 (10)
dx dp \ dx dp | dx dp_

dz 7.5+dy dy+dz dz‘_o’

" The conditions expressed by the three equations (2) take in the present instance the
following form:

dv dw
0""dz " dy
dy ay d*x d-l: d? dx

d?x
== dx( dy? t dzg) +a dy d.z'dy dz " dzdx

LR (T B dx ey dy 4 '
d‘”<dy2+d22)_;l§'dwdy 4z dedw’ > . . .. (11

0= %_%z(expression formed by symmetry);

0=d~y—a~x=(expression formed by symmetry).

The preceding set of three equations show the whole conditions which the functions
2 and % must fulfil, in order that they may represent stream-line surfaces.
In finding the point in a stream line where a given function F is a maximum, the

condition to be fulfilled is

dF d d d
E:(u%+v@+wdz)F=0. N ¢ S Y
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The following formula is an immediate consequence of the equations (2): let d2’ denote
an elementary line in any direction, and «' the component velocity of a particle along
da'; then '

du!  d (u2+v2+w9>

In the two previous papers before referred to, a class of stream-lines is described under
the name of Lissoneoids, whose characteristic property is that two maxima and one
minimum of the velocity coalesce in one point, at the greatest breadth of the figure
bounded by the line. The mathematical properties of a lissoneoid are expressed by the
following set of equations: '

when 2=0; let v=0; w:O;]

d ' .

4 (W +o+w)=0; T ¢ 1)
dQ 2 2 '2 ’

d—tg(u+v+fw)=0; J

and it can be shown that for the last two of these equations the following may be
substituted in the cases which occur in practice:

d*u du? du?
uW—I—Z@Q—FZEz@:O. N eA e )

In order to express the condition that at an indefinitely great distance from the origin
v and w shall vanish, and % approximate indefinitely to 1, it is necessary that, when
either #, 9, or z increases indefinitely, the functions ¥ and y shall approximate indefi-
nitely to two functions of y and z only, which may be denoted by ¥, and i, fulfilling

the following conditions,
Bbg dxo Ao dxo =1;

(12)

that is to say, first, the surfaces represented by ¥, and yx, divide the space into elemen-
tary streams of equal transverse area; secondly, these surfaces are plane or cylindrical,
and parallel to the axis of x; and thirdly, they are asymptotic to the surfaces repre-
sented by ¢ and . Let us now make

Y=Y+ x=x+x: - - - . . . . . . (13)

then the equations (9) take the following form:
1B Dy By dxo | B dxy b dyy by dy My dy,
I TR PR P S i P PR A Vi SR Y

%.%4_@1.%_"7‘[’1 dxo__ 4, dy, . e (1Y

dz dz dz dx dx dz dz dz

w= Wby M de b d W dg,

de dy ' de dy dy de dy dz’
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and all the terms in those expressions, except the 1 in the value of u, represent velocities
of disturbance produced in a still mass of liquid by the motion of a solid parallel to «
with the velocity —1.

The form of the disturbing solid may be represented by an equation of one or other
of the following forms:

Y=0; %=0; F{x)=0.. . . . . . . . (15)

In the problems described in the sequel, the first of those expressions is supposed to
be used for the figure of the surface of the disturbing solid, viz. ¥=0; so that ¥=b
with an unlimited series of increasing values of &, expresses the figures of a series of
stream-line surfaces lying between successive layers of liquid that enclose the solid within
them, like concentric tubes. A series of negative values being given to &, correspond to
a set of internal stream-lines, which represent currents circulating inside the disturbing
solid. In the present investigation, the external stream-lines alone will be considered.
The equation y=¢, with a series of values of ¢, represents a series of stream-line surfaces
which meet the surface of the solid (4y=0) edgewise, intersect the surfaces denoted by
=0, and subdivide the previously mentioned layers of liquid into elementary streams
of equal flow.

Two alternative modes of proceeding may be followed in the proposing and solution
of problems as to the figures of the stream-line surfaces*. One is as follows: a form is
assumed for the function y, satisfying equations (13) and (12); and thence are deduced,
by means of the equations (11), corresponding forms of the function ¢, denoting figures
of the disturbing solid and of its enclosing stream-line surfaces; and this is the method
which has been followed in previous researches, and which will be followed as regards
the quadrifocal stream-lines or cycnogenous neoids specially treated of in this paper.
The other mode of proceeding is to assume for the function +/ a form satisfying
equations (18) and (12), and denoting certain figures of the disturbing solid, and of the
enclosing stream-line surfaces, and thence to deduce by the aid of the equations (11) the
corresponding form and values of the function y, and the figures of the elementary
streams.

From the form of the equations of condition (11)it is easily seen that, if with a given
assumed form of either of the functions +J, %, there are several forms of the other function
which satisfy those equations, then every form obtained by addition or subtraction of
those forms will satisfy them also. In symbols, let % be a given form of one of the
functions, and J; any one out of several forms of the other function which, taken along
with y, satisfy the equations; then any function which can be expressed by =.+; will
satisfy them also.

§ 4. Graphic Construction of Stream-lines.—Let one side of a piece of paper be taken
to represent one of the surfaces whose equation is y=c. Then the stream-lines which

#* Note added in June 1871.—It is to be observed ti:lat those methods are tentative only ; that is to say, they
may fail when tried, and repeated trials may be necessary before a solution is obtained.
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are the traces upon that surface of the several surfaces expressed by Y=4* will be
represented by lines on that piece of paper; and each of those lines will have an asym-
ptote, being the trace, on the surface x=¢, of a surface whose equation is {,=0.

The drawing of such stream-lines is facilitated by the following process invented by
Mr. CLERK MAXWELL :—when a function 4 is the sum of two more simple functions,
Yo+, draw the series of lines whose equations are «,=35,; then draw the series of
lines whose equations are +,=¥0, ; then draw curves diagonally through the angles of
the network made by the two former series of curves, in such a manner that at each
intersection 6,45, shall be =&; the new series of curves will be that represented by
-the equation ), ++,=58. The same process may be extended to curves represented by
a function consisting of any number of terms. For example, let the function be one of
three terms, 4,4+, +¢, Draw the two series of lines represented respectively by
J,=0, and +},=0,; through the angles of the network draw the series of lines repre-
sented by ¢, +y,=0b,4b,; then draw a fourth set of lines, being those represented by
Y, =b,, and through the angles of the network made by the third and fourth series of
lines, draw a fifth series of lines, being that represented by

‘Lo+‘l’1+'4’2=bo+bl+b‘z=b~

Figs. 2 and 3 show examples of those processes; and in fig. 4 also the curves have been
drawn by means of them, although the network is omitted.

In each case the lines expressed by the function 4, represent a uniform current;
and in the figures they are straight and parallel to #. The lines expressed by ) —+,,
the sum of the remaining terms of the function, which form a network with the lines
of uniform current, may be called Lines of Disturbance; for each of them indicates the
direction of the motion of disturbance of each particle that it traverses. They are
marked with bold dots.

) 4A. Empirical Bule as to the volume enclosed by a Stream-line Surface.—It has
been found by the drawing and measurement of a variety of figures bounded by closed
stream-line surfaces, unifocal, bifocal, and quadrifocal, and also by parts of bifocal stream-
line surfaces suited for the shapes of vessels, that the following rule gives the volume
contained within such a surface to the accuracy of about two per cent.:—multiply the
area of midship (or greatest transverse) section by five sizths of the longitudinal distance
between the pair of transverse sections whose areas are each equal to one third of the
area of midship sectionf.

* Note added in June 1871.—The values of b are supposed to be equidifferent.

4 This rule was first published as applied to stream-lines in two dimensions, in a treatise entitled ¢ Ship-
building, Theoretical and Practical,” by Warrs, Ranxine, NAPIER, and Barnus: Glasgow, 1866, page 107. Its
approximate correctness extends to such extreme cases as a sphere on the one hand and a wave-line bow on the
other.
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Cuaprer I1. Summary of Principal Properties of previously known Special Classes of
Stream-lines.

§ 6. Stream-lines in two Dimensions, especially those with two Foci—Following the
first of the two methods mentioned in § 3, let the simplest of all possible forms be
assigned to the function y, viz. y==2. This form represents the division of the liquid
mass into an indefinite number of layers of uniform thickness, by a series of plane
stream-line surfaces parallel to # and to y; and it involves the supposition that all the
motions of the particles of liquid take place parallel to the plane of # and .

The equations (9) in this case become the following:

u:-—-%; o= =0 L 9)

The equations (11) become the following :

dv__ 4% du__ &% O

™ dedz " dz  dyde

du dv_ d* dQ\IJ —0. (17)
dy ™ dz™ da®
The equations (12) and (13) are reduced to the following:
d%
- =1;
. (18)
and therefore ¥,=y, and Y=y+4+Y,;
where ¥, is a harmonic function in two dimensions; that is, one fulfilling the condition
a a2
(W+Jy_2>\pl—_-o. R e 1)
The equations (14) become the following:
@y W
u_1+—~1,fu_ Z’EJ]"""”"'(%)

The preceding equations show that the stream-line surfaces are cylindrical (in the
general sense), with generating lines parallel to the axis of z, and that they have asym-
ptotic planes parallel to the plane of za. The traces of those asymptotic planes on the
plane 2y are a series of equidistant straight lines parallel to the axis of #, and correspond-
ing to an arithmetical series of values of 4 in the equation y==¥&, being the stream-lines
of a uniform current in a plane layer of uniform thickness.

The simplest case of disturbance of such a current by a solid body is that in which
the disturbance may be represented by a radiating current, diverging from an axis in the
plane of zz, within the solid body and parallel to z, and converging either towards the
same axis, or towards a second axis similarly placed ; and this is the mode of production
of the bifocal stream-lines in two dimensions, or oogenous neoids, whose properties are
investigated in detail in a paper “ On Plane Water-lines,” published in the Philosophical

MDCCOLXXI. 2@
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Transactions for 1864, page 369. The traces of the axes of divergence and convergence
on the plane of ay are called the foci. The construction of such bifocal stream-lines
is represented by the finer and fainter network of lines in fig. 2. O X and O'Y are the
axes of coordinates in the plane of projection, which shows a quadrant of each of the
stream-lines, the other three quadrants being symmetrical to that shown. The equi-
distant straight lines parallel to O X are the asymptotes, corresponding to values of y=5.
A is one of the foci; and the other is situated at an equal distance from O in the con-
trary direction. The stream-lines of a current in a plane uniform layer diverging from
or converging towards a focus are straight, and make equal angles with each other; and
their equation is

\lz1=lctan":%‘f=b; N 18!

in which =0 A denotes the distance of the focus from the origin, 4 is a constant having
a series of values in arithmetical progression, and £ is a constant called the parameter ;

so that 7 is an angle having a series of values in arithmetical progression. This para-

meter is to be made positive for convergence, and negative for divergence.

If we suppose the diagram extended so as to show both foci, the focus of convergence
‘being in the position #=+a, and the focus of divergence in the position 2=—«, we
obtain for the stream-line function representing these motions combined the following
expression :

\P,—I—xlfzzk(tan“‘:f—;—g-—tan“f—;—_—‘l) =b. . . .. (22)

The stream-lines or lines of disturbance represented by this function are constructed
by drawing two similar sets of equiangular radiating straight lines through the two foci,
and then drawing curves diagonally through their intersections and through the foci;
but as these curves are all circles traversing the foci, it is easier to draw those circles at
once, without previously drawing the radiating straight lines; and such is the process
described in the paper referred to. The fine arcs which traverse the focus A in fig. 2
are parts of such circular lines of disturbance. Their centres are all in the axis of y;
and the radius of any one of them is given by the following formula: let

_%:_—tan“w—tan“w"a
Y

=0; then radius of circle=a cosecd.. . (23)

The combination of the divergence and convergence with the uniform current gives,
for the stream-lines, the comparatively fine curves in fig. 2, which traverse diagonally
the network made by the parallel straight lines and the fine circular lines of disturbance
that spread from the focus A. The general equation of those stream-lines is

y=y+b(tan S ) =yt L (24
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In the particular case =0, this equation has two roots; viz.

=0, representing the axis O X, and } (25)

y=MKb, representing the oval of which I B in fig. 2 is a quadrant.

That oval is the trace of the cylindrical surface of a solid which will disturb a uniform
current in such a way as to produce the whole series of stream-lines ; and it is the only
one of those lines which is closed and finite, all the others being infinite and having
asymptotes. When the two foci coalesce into one, that oval becomes a circle.

The component comparative velocities are as follows :

Y

= =1— ke—a) ko +a)
Y

=0+ T ot @24y’
B d\[;_ ky ky
=0t T arar

(26)

In the previous paper already referred to, the parameter here denoted by % is
denoted by f; and the comparative velocities here denoted by » and v are denoted by

%and g The origin O is taken midway between the foci for convenience. Should it be

placed at unequal distances, let #=-a' for one focus, and —¢" for the other; then in
the equations, ¢ is to be put for —a, and +a" for +a.

Let 7 denote the half-length O L of the oval stream-line ; then by maklng w=0, y=0,
and =/ in the first of the equations (26), it is found that the following relation exists
between the half-length /, the excentricity a, and the parameter £,

P=a*—2ka=0. . . . . . . . . . . (264)

Let g, be the greatest half-breadth O B of the oval stream-lines, then we have by
equation (24), :
y.,—ZIctan“‘;: e e o . . o . . . . (26B)

0

\ 6. Stream-line Surfaces of Revolution.—To obtain by the first method mentioned in
§ 3 the equations of stream-line surfaces of revolution, the form of the function y; is to
be taken so as to represent a series of longitudinal planes cutting each other at equal
angles in the axis of 2. Hence we have the following expressions:

a1 2. X (.
x=tan nE dw.._O,
e —z . dx_ Y .
dy_l/g—[-ZQ’ dz—yﬂ_l_ze’
d? x d’x =%z
ay? a’z2 (#® +29)
dx Py
dydz = P+ %)%

22

N 10
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As it is sufficient to determine the traces of the stream-line surfaces of revolution in
any one of those planes, we may take the plane of 2y, for which z=0; and then we have
the following values:

2272‘7_/; W:—J?ZO ; Po o o e e e e (27A)
dy 1
dydz Ty

When the preceding substitutions are made in the equations (9) and (11), they are
converted into the following:
- The equations (9) become

@ W ).
W= V=g w=0; . . . . . . . (28
and the equations (11) become
do_ Y du AW &y 1
O dz e == T (and therefore _O),'L (25)
1

du dv a a2y dA
02’7—% Qdy+y<a’x2+ dy® )

J

- The same substitutions being made in the equations (12) give the following results:
g‘%:l and therefore '4/0.—— N €100

This last equation shows that the stream-line surfaces which represent a uniform
current, and are asymptotes to the actual disturbed stream-line surfaces, are a series of
concentric circular cylinders described about the axis of a, the half squares of whose
radii are in arithmetical progression. The traces of such a series of cylindrical surfaces
are represented in fig. 3 by the straight lines parallel to the axis O X.

The simplest case of the motion of disturbance produced by a solid of revolution
whose axis is the axis of a, is represented by a current diverging symmetrically in all
directions from a focus in that axis, and afterwards converging towards another such
fecous. The stream-line surfaces of revolution about that axis which represent a diver-
ging or converging current alone, asthe case may be, are obviously a series of cones with
the focus for their common apex, cutting a spherical surface described about that apex
into equal zones. The function which represents the traces on the plane of ay of such
a series of conical stream-line surfaces is the following:

z—a ]c%os&

'4‘1 .'_L‘Q V{(w—a)‘+y2} 2 5 e e e (31)

in which @ denotes the distance of the focus from the origin of coordinates and :i:g is

a parameter, to be used with the positive sign for convergence and with the negative
sign for divergence.
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In the second expression for the function, § denotes the angle made by the trace of
the cone with the axis of 2.

To draw a set of those traces, describe a circle about the focus; divide the diameter
of that circle which lies along the axis of # into a convenient number of equal parts;
through the points of division of the diameter draw ordinates perpendicular to it, cut-
ting the circumference; through the points of division of the circumference draw radii ;
these will be the required traces of the cones.

- For the focus of convergence, let = +a, and for the focus of divergence, let z=—a;
then the following function represents the lines of disturbance, or stream-lines of the
combined motions of divergence and convergence,

xr—a - 2+4a

k2 k? .
Wb =y Vi Ve st eosd)s L (32

in the last of which expressions 4 and ¢ denote the angles made with the axis of # by
the two lines drawn from the point (2, y) to the foci of convergence and divergence re-
spectively. Those lines of disturbance are constructed graphically by drawing two equal
and similar sets of radiating straight lines through the foci, as already described, and
then drawing curves through the foci, and diagonally through the angles of the network
made by the two sets of radiating straight lines. Those curves are already well-known,
being the lines of force of a magnet whose poles are at the foci. The fine curves in
fig. 3, which spread from the focus A, are examples of them; they were drawn by the
method above described, though the radiating straight lines have been omitted from
the Plate to prevent confusion.

The stream-lines which are the traces, on the plane of zy, of the stream-line surfaces
of revolution, may be constructed, as before, by drawing them diagonally through the
angles of the network made by the parallel straight lines in fig. 3 with the lines of dis-
turbance. Their general equation is as follows:

_P B[ a—a  aka )
'HL—Q+Z{V{(W—Q)Q-{-yg}—_'\/{(-Z'-{-d)g-l—yg}}—b’ . . [ (38)

b having a series of valuesin arithmetical progression. The principal properties of those
lines have been stated in the Philosophical Magazine for October 1864 ; but their de-
tailed investigation has not hitherto been published.

In the particular case /=0, equation (33) has two roots, viz.

y=0, representing the axis O X; and

2 . (34
%: cos ¢ —cos 4, representing the oval of which L B in fig. 3 is a quadrant. (54

That oval is the trace of the surface of a solid of revolution which will disturb a
uniform current in such a way as to produce the whole series of stream-line surfaces
whose traces are expressed by equation (33); and that oval surface of revolution is
the only surface of the series which is closed and finite—all the others being inde-
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2
finitely long, and having asymptotic cylinders expressed by %:b. To avoid con-

fusion these infinite bifocal stream-line surfaces are not shown in fig. 3. They bear a
general likeness to those shown in fig. 2.

When the two foci coalesce into one, the disturbing solid becomes a sphere, whose
stream-line surfaces were investigated by Dr. Hopre (Quarterly Journal of Mathematics,
March, 1856).

As to the modification of the formule required if the origin is not taken midway be
tween the foci, see the end of § 5.

The component comparative velocities are as follows:

dy i? —2+a z+a ]
=14 - o
¢ HE {{(w—a)2+y9}'§+{ (w+a)2+y2}f}’

IR R (G {(m+a)2+y‘*’}%}'
Let 7 denote the half-length O L (fig. 3) of the oval solid. Then by making, in the

first of the above equations, =0, #=1I, and y=0, the following relation is found to exist
between the half-length, excentricity, and parameter,

(35)

(tP—ayP—2kla=0. . . . . . . . . . (36)
Let g, be the extreme half-breadth OB, then by equation (33) we have
‘ Vot a@ys—4kta*=0. . . . . . . . . . (364)

Cuaprer I11. Special Theory of Quadrifocal Stream-lines, o Cycnogenous Neoids.

§ 7. Quadrifocal Stream-lines in general—A quadrifocal stream-line is the trace on
a longitudinal diametral plane of a quadrifocal-stream-line surface, belonging either to
the cylindrical class or to that of surfaces of revolution. The four foci are situated in
an axis parallel to the direction of the uniform current which is disturbed by the solid ;
and, as in the previous chapters, that axis will be taken for the axis of , and the trans-
verse axis in the plane of projection for the axis of #.

The general equation of a quadrifocal stream-line may be expressed as follows:

‘J/=\Po+%+¢2+%+\f/4=b S (37)

In that expression +J, is the function representing the uniform current of the velocity 1,
which is equal to y or to § %*, according as the surfaces are cylindrical or of revolution ;
", expresses the convergence of certain currents towards one of the foci, +J, the diver-
gence of the same currents from a second focus, +, the convergence of certain currents
towards a third focus, ), the divergence of the same currents from a fourth focus.

The graphic construction of quadrifocal stream-lines is illustrated in figs. 2and 8. In
each of those figures, A is one of the first pair of foci, A’ one of the second pair; the
other focus of each pair is supposed to lie at the other side of the origin O, beyond the
limits of the drawing.

The lines of disturbance expressed by ¥, +1,, being those due to the first pair of foci,
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are the fine curves spreading from A. The lines of disturbance expressed by ¥,+,,
being those due to the second pair of foci, are the fine curves spreading from A'. Both
those sets of lines were drawn according to thé rules given in sections 5 and 6. The
lines of resultant disturbance, expressed by the function ¥ —Y,=v,+V,+¥;4,, are
drawn diagonally through the angles of the network made by the two former sets of
lines. Theyare marked with strong dots in the figures. They all traverse one or other
of the foci, A, A, with the exception of one line, which meets the axis O X at right
angles in the point M*. '

The actual stream-lines are drawn diagonally through the network made by the lines
of uniform current and the lines of disturbance. They are shown by rather strong lines
in figs 2 & 3. In each set of quadrifocal stream-lines there is one only that is finite
and closed. It corresponds to the value 4y=0=0; and it is the trace of the surface of
the solid whose disturbing action produces the whole system of stream-lines. It has
rounded ends, cutting the axis of & at right angles. In each of the figures 2 & 3, a
quadrant of that curve is shown, marked I/ B'. This is the curve which resembles the
water-line of Mr. FRoUDE’S model B, fig. 1, and is therefore properly a cycnoid, or swan-
like curve. The equation =0 has another root, viz. y=0, representing the axis of .
The other stream-lines of the system, lying outside the curve L/ B/, are infinite, and have
for asymptotes the stream-lines of the uniform current. They may be called cycnogenous
stream-lines, as being produced by the cycnoid stream-line surface.

In a system of bifocal stream-lines there are two independent constants, on which the
dimensions and figures of all the lines of the system depend—the excentricity (being
half the distance between the foci) and the parameter (as to which see equation 36).
In a system of quadrifocal stream-lines, there are five independent constants, viz. :—the
two parameters, for the first and second pair of foci respectively; the eccentricity of the
first pair of foci; and the distances of the two foci forming the second pair from a point
midway between the first pair. If those distances are equal, the cycnoid curve and each
of the stream-lines produced by it have then two ends symmetrical to each other; if
unequal, those ends are unsymmetrical. In all the examples shown in the Plate the
ends are symmetrical.

In each of the figures 2 and 3, the bifocal oval stream-line marked B L has been de-
scribed about the first two foci with the same parameter which is assigned to those foci
in describing the quadrifocal closed stream-line B' L.

Fig. 4 shows a series of cycnoids, or quadrifocal closed stream-lines, in two dimen-
sions, described about the same four foci. The parameter for the first pair of foci (one
of which is marked A) is constant, and is that of the bifocal oval neoid B L. The para-
meter for the second pair of foci (one of which is marked A') was made successively

# In fig. 2 the quadrifocal stream-lines and their lines of disturbance have been engraved on a plate already
covered with bifocal stream-lines and their lines of disturbance ; and therefore, in order to avoid confusion, some
of the quadrifocal lines of resultant disturbance extending from A towards the axis of Y, in the neighbourhood
of the point B', have been omitted. Enough have been drawn to show the principle of their construction. In
fig. 3 the series of quadrifocal lines of disturbance is complete.
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equal to 15, i3, i, 1% and % of the first parameter; and thus were drawn the
five cycnoid curves marked respectively 11, 22, 33, 44, and 66. The lines of uni-
form current and of disturbance used ‘in drawing these curves are omitted in the
engraving.

This last figure illustrates the fact that, with a given set of foci, and a given para-
meter for the inner pair of foci, the cycnoid becomes leaner and more hollow at the
bow as the parameter for the outer pair of foci diminishes; also that, with large values
of the second parameter, that curve is convex throughout, like the line marked 66; and
that for some intermediate value the hollowness just vanishes, as is very nearly the case
in the line marked 4 4. It is obvious that any degree of fineness may be given to the
entrance by increasing the distance of the second foci from the first, and at the same
time using a small second parameter.

§ 8. Oylindric Cycnoids.—Forms and Velocities of Streams.—The equation of a system
of quadrifocal stream-lines in two dimensions is as follows,

— !
\.!’:y—l—lc(tan‘l%a—-t w+a) -l-/c'(tan“T— tan“w;al>_—_6, . . (38)

in which Z and %' are the parameters for the inner and outer pairs of foci respectively,
a is the excentricity of the inner pair of foci, and ¢ and o' are the distances of the
outer pair of foci from the origin in opposite directions. The equation of the cycnoid
curve, or trace of the surface of the cylindric solid which generates the series of stream-
lines, is Y=0b=0. If that solid is symmetrical-ended, we have ¢"=«. The components
of the comparative velocity of a stream at a given point (z, y) are given by the following
equations, in which, for brevity’s sake, the following notation is used:

(o—af+9°=r%; (v-afty=ni:
(z—ad P +yr=r3; (a+a" ) +y'=ri
u___%t_!z—__l k( —a w-l;a)_]f,<w-—‘a'_w+a”); ‘I

2 2
79 73 n

e (e B

At the extreme breadth of the space bounded by a given stream-line we have v=0;
and when the cycnoid is symmetrical-ended, the longitudinal component » at the same
point takes the following value, found by making =0,

(39)

2ka ko
u0_1+ag+y2+a,g+yz, O G Y

where g, denotes the greatest ordinate or “midship half-breadth” of the stream-line
under consideration.

§ 9. Cylindric Cycnoids.— Extreme Dimensions.—The extreme length of a cylindric
cycnoid is made up of the distances of its two rounded ends, where it cuts the axis of ,
from the origin of coordinates. Let { be one of those distances; in the expression for
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u, equation (39), make #=1[, y=0, u=0; then we have the following equation,

1 1 1
0=1- 7"\1 2 m)—’ﬁ’(mf—”‘mwl)’
which by ordinary reductions gives the following biquadratic equation:
0=0'~P(d —a")—VP(a’+ da"+2ka+-F (d +a"))

+ U —2ka)(d —a")+o*d "+ 2kada” Coe o (40)

+Ea(d+a").
Of the four roots of this equation, the two greatest, positive and negative respectively,
belong to the cylindric cycnoid; and the sum of their arithmetical values is its length.
The two least, positive and negative, belong to an internal stream-line, which is also a
closed curve. It passes outside and near to the inner foci, and inside the outer foci,
and it is foreign to the purpose of the present investigation. '

When the two outer foci are equidistant from the inner foci (that is, when o'=d'),

equation (40) becomes a quadratic equation in 7*; that is to say, we have
0=0'—VP(a*+a”+2ka+- 2K a )+ a?a” + 2kad® + 2k dle®. . . . . (404)
For brevity’s sake, let
& 4-2ka=2*>, d”+2Fd =),

being in fact, according to equation (26 ), the values of * for two bifocal oval neoids,
with the respective excentricities @ and &, and parameters £ and . Then the solution
of equation (40 4) is as follows:

lzzxg‘g"rei\/{(—ﬂ:%m)?—lﬂikk’aa’.} . . . . . . (408B)

The greater root is the square of the half-length of the cycnoid; the lesser root
belongs to the internal stream-line already mentioned.
The method of finding the extreme half-breadth in a cycnoid with unsymmetrical ends,

is to make =0 in equation (38), and §=O in the second equation (39), and, from the

pair of equations so obtained, to deduce # and y by elimination. 'When the ends of the
cycnoid are symmetrical, the extreme half-breadth is midway between the foci; hence,
making £=0 in equation (38), we have the following transcendental equation,

I
—— ——— —l
0=y,— 2k tan™' y 2k tan vl e (41)

from which g, is to be calculated by approximation.
§ 10. Cyenoids of Revolution.—Forms and Velocities of Streams—The equation of a
series of cycnogenous or quadrifocal stream-lines of revolution is as follows:
2 2 —_ 12 —! ’ I
_g__l_lc (g___w—l—a)_{_li_(w a_.z+a ):b; o ’(42)

—2 2\ n Tq 2 Tg Ty

in which r,, #,, 7,, and 7, have the same meaning as in equation (88); that is, they are the
MDCOCLXXI. 2R
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distances of the point (2, y) from the four foci respectively. The equation of the cycnoid
of revolution which produces the series of stream-lines is ¢=6=0; and this equation
has two roots, viz. y=0, denoting the axis of #, and
y*=k*(cos b,— cos 0,)+£*(cos §,— cosd;), . . . . . . . (424)
in which 4,, 6,, 4,, and 4, denote the angles made with the axis of # by lines drawn from
the point (z, ) to the four foci.
The component comparative velocities are as follows:

z+a x+a\ K[—axt+d  z+d\
AR
&Ry By, 101 [
v=—id="(~ rs+rs>+2( ) |

When the two ends of the solid are symmetrical, we have a"=d'; and the value of u at
the midship section, where ¥=0 and #=0, is as follows,

ka k%
u"—l+(a2+y0)%+(a’2+y0)%’ Coe e e oo (431)
in which #, is the midship half-breadth.
S 11. Gyenoids of Revolution.—Extreme Dimensions—Let [ denote the distance from
the origin of one of the points where the cycnoid surface of revolution cuts the axis of .
Then, in the first of the equations (43), making =0, y=0, =1, we obtain the following

equation of the eighth order,
0=(l—a).(I—d)(I+d"P—2k1la(l—d ) (I+d")?
12 .
—%{22(61-”—]—a’)+(a”2—~a’2)} . (lz__az)z_

The greatest positive and greatest negative real roots of this equation give the ends of
the cycnoid; the other real roots belong to internal stream-lines.

When the ends of the solid are symmetrical, so that ¢"=a, the preceding equation
becomes

(44)

0=(P—aP(P—a®y—28la(l— a®P—2k"ld (P—a?)®. . . . . (444)
The greatest half-breadth and its position are to be found in the general case, as before,
by deducing values of y and « by elimination from the pair of equations ¢=0, v=0.
When the ends of the solid are symmetrical, the greatest half-breadth is at the origin ;
hence, making #=0, v=0, we have the following equation,
o 2k% 2%
0=y~ V@+y)” VidP+y) o (49)
which, when reduced to the form of an algebraic equation with g2 for the unknown
quantity, is of the eighth order, as follows:
O0=y3(ss+0")' (9 + ")+ 16k (y;+a") |
FLOE ik — S+ )+ ) |
—8E "y s+ @) (95 +a") J
__1_16]‘.4%./4 2(y0+a2)(y0+alz).

(45 4)
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- Equation (45) may be used to solve the following problem :—Given the midship half-
breadth g,, the excentricities of the two pairs of foci @, ¢/, and the inner parameter £*;
to find the outer parameter .

Cuarrer IV. Dynamical Propositions as to Stream-line Surfaces.

0 12. Resultant Momentum.—The resultant momentum, parallel to #, of any part of
a given elementary stream is equal to that of an undisturbed part of the same stream
whose length, projected on the axis of , is the same. For let s, be the sectional area
of an undisturbed part of such a stream and 1 its velocity; then s,de is the momentum
of an elementary part of its length.

Let dx also be the projection on the axis of # of an elementary part of the same
stream, when disturbed, ¢ the sectional area of that part on a plane normal to x, and »
its component velocity parallel to #; then its component momentum parallel to 2 is
usdz. But us is the volume of flow along the elementary stream, which is uniform
and =g¢,; therefore

usder=q,dx ;
so that the component momentum parallel to # of any part of an elementary stream is
simply

oo(2—2,) ;
in which &, and &, are the values of & for its two ends. Consider now an elementary
stream of indefinitely great length, so that its two ends lie in one straight line parallel
to @, and are at so great a distance from the disturbing solid that its action on the par-
ticles at those ends vanishes. The resultant momentum of that stream is the same as
if it were undisturbed ; and such being the case for every elementary stream, is the case
for the whole mass of liquid. This conclusion is expressed by the following equations, in
which the integrations extend throughout the whole liquid mass outside the surface of the
disturbing solid

W (u—1)dz dy dz=0;
Wvda dy dz=0; ([fwdx dy dz=0.J

The resultant momentum ({{udz dy dz is that of the liquid relatively to the solid, con--
sidered as fixed.

If we next consider the centre of mass of the liquid as fixed, the resultant momentum
of the liquid becomes

(46)

I (w—1)dz dy d2=0;

and that of the solid relatively to the liquid, per unit of velocity and density, is represented

by —D, D denoting the displacement of the solid (that is, the volume of liquid which

it displaces, and also the mass of the solid supposed equal to that of the displaced liquid).

Thirdly, let the common centre of mass of the liquid and solid be taken as a fixed

point, and let the momenta of the liquid and solid relatively to that point be taken.

Those momenta are equal and opposite—that of the liquid being positive, and that of
2r2
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the solid negative. The velocity of the centre of mass of the liquid relatively to the
solid being still taken as unity, its velocity relatively to the common centre is expressed
as follows, L being the total mass of the liquid,

D s
e (46 4)
The velocity of the solid relatively to the common centre is
L
e T (46 B)

and the respective equal and opposite momenta of the solid and liquid relatively to the
same point are expressed by

LD
Eroh e e e . (460)

When the mass of liquid L becomes indefinitely great, IT].%[T becomes indefinitely small,

L . . . LD
— ;D 2Pproximates indefinitely to —1, and 3 LD

these indefinitely close approximations, it is necessary to bear in mind that (as is implied
in equation 46) the component longitudinal velocity of current u is taken relatively to
the centre of mass of the liguid, and not relatively to the common centre of mass, the
corresponding component relatively to the common centre being

to +D; but notwithstanding

D
D

If the liquid is absolutely free from stiffness and friction, the resultant pressure exerted

between it and the solid in a horizontal direction is obviously equal to nothing, so long

as the velocity is uniform, and only acquires a value in the event of acceleration or

retardation; which value is expressed by the rate of change per second in the equal and
. LD

opposite momenta -+ LD

To adapt the formule of this and the ensuing sections to other velocities and densities

than those denoted by unity, let —V be the velocity of the solid, and ¢ the density of
“the liquid; then quantities denoting velocities are to be multiplied by V, those denoting
masses by g, those denoting momentum by Ve, those denoting heights due to velocities
by V2, those denoting energy, and those denoting intensity of pressure, by V2.

It is to be observed that, according to the notation of this paper, motion ahead is
treated as negative, and motion astern as positive, the latter being the direction of the
motion of the liquid relatively to the solid.

§ 13. Energy of Currents and of Disturbance—The energy of the motion of the liguid
mass contained within a given space may be taken either relatively to the disturbing
solid, considered as fixed, in which case it may be called the energy of current, or rela-
tively to the undisturbed liquid, in which case it may be called the energy of disturbance.
Assuming unity, as before, for the values of the undisturbed velocity and of the density,
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it is obvious that the energy of current in an elementary space of the volume dz dy dz is

Hw+v+w)de dyds, . . . . . . . . . (A)
and that the energy of disturbance is
v +vr4+w—2u+1)dedyds. . . . . . . (B)

To find the total energy of current, or of disturbance, as the case may be, in a given
finite space, the one or the other of the two preceding expressions is to be integrated
throughout that space. In order to solve questions of this kind, recourse must be had
to the wvelocity-function (¢) well known in hydrodynamics, and already referred to in § 2,
equations (1) to (7), and in § 3, equation (9), as representing by its values a series of
surfaces which cut all the elementary streams at right angles—and especially to a pro-
perty of that kind of function which was first demonstrated by GREEN, in his Essay on
Potential Functions, and which is expressed as follows : —Let ¢ be a function of #, ¥ and z,

“which fulfils the condition
'2 2 '2
dx2+zjﬁ+%z“2‘
let do be an elementary part of the bounding surface of an enclosed space, and let %

denote differentiation relatively to the normal to that elementary part, dn being positive
outwards; then (under certain limitations which do not affect the subject of the present

ﬂf(’”’q 4o’ dzg>dxdg/dz_g¢>d . ... (©

the double integral extending to all parts of the bounding surface. Observing now that
d¢ o= =1

dy’ dz’

paper)* we have

let E; denote the energy of current, and E; the energy of disturbance, within a given
space, corresponding to the undisturbed velocity 1 and density 1; then we have

J |
Ec::%yfgoa%da; N (Y

D_.2W¢d¢’da fﬁ(ﬁﬁ)@@@ L (4T

1t is next to be observed that, because the velocity-function ¢ expresses a series of sur-
. d .
faces cutting all the stream-lines at right angles, the coefficient 3% (denoting the compo-

nent velocity normal to the elementary surface do) is nothing for all bounding surfaces
and parts of bounding surfaces that coincide with stream-line surfaces,—and therefore
that, in finding the integral E; which expresses the energy of current within a given

% Ag to the limitations to which this proposition is subject, see a paper by Hermmorrz, in CrELLE’s Journal
for 1858, « Ueber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen ;”
also Tmomsox en Vortex-Motion, Trans. Roy. Soc. Edin. 1867-'68, pp. 239 et seqq.
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space, it is necessary to take into account those boundaries only of that space which inter-
sect the stream-lines.

The values of the velocity-function ¢ for quadrifocal stream-line surfaces are obviously
the following :—For cylindrical stream-line surfaces,

p=a-+k%hyp log::ii+lc’ hyp log:;:; B €23))
for stream-line surfaces of revolution,
/1 o1 211
¢=x+§<;l—;,‘2) +?<;:;—7—‘4> 5 e e e e e e e (49)

in which 7,, 7, 75, and 7, denote, as before, the distances of a point from the four foci.
These expressions may be made applicable to bifocal surfaces by making #'=0, and

might be extended to surfaces with any number of pairs of foci by increasing the number
of terms and parameters.

When a pair of foci coalesce, the function of » belonging to those foci is to undergo

the operation —A d%, in which A is an arbitrary constant of one dimension—thus giving,

for cylindrical surfaces, a term of the form — kgx, and for surfaces of revolution a term
BAz
2r8 "
In the foregoing investigations, and in their appplications which are to follow, the
energy of disturbance is taken relatively to the centre of mass of the liquid. If taken
relatively to the common centre of mass of the liquid and solid, it would be increased by

a quantity whose value for the whole mass of liquid, per unit of undisturbed velocity
and of density, is

of the form —

DL D2
Q(L_I_D)Q—‘Q(L_*_D)Q‘fj}vdxdydz; e o ... (498B)

but when the extent of the liquid is unlimited, that quantity vanishes as compared with
the quantity given by equation (47 A).

§ 14. Energy in an Elementary Stream.—In order to apply the principles of the pre-
ceding article to the whole or to a given part of an elementary stream, let ¢, be the
transverse sectional area of that stream when undisturbed, measured on a plane normal
to #, o the sectional area on such a plane at a given point, #, and #, the values of «,
o, and 4, the values of ¢, and ¢, and ¢, the values of @, for the two ends of the part of
the stream under consideration; and let z, be greater than #,. Then the energy of

current, per unit of undisturbed velocity and of density, is found by taking the integral
in equation (47) for those two ends only; that is to say,

do, dp
, EG=%¢2¢?ZT§”2—%¢’1d—Iz,iUl§
but Zlg s=us=0,; and therefore we have simply, for the energy of current,

EC-'_—E29(_¢>2_¢,). Y G 10))
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The energy of disturbance per unit of velocity and density is expressed by
) ‘ 2y ’ Tyl
ED=EC—£ (u——%)adx):%"{%—@l~2x2+2x1+‘£ 'l 7}. .. 6)

0 15. Total Energy of Disturbance.—In order to find the total energy of disturbance
throughout the indefinitely extended mass of liquid, the most convenient method is to
find the limit to which E, in equation (47 A) approximates when the integrals are taken
throughout a circular cylinder for cylindric cycnoids, or a sphere for cycnoids of revolu-
tion, and the radius of the cylinder or of the sphere is indefinitely increased. The coeffi-

cient d_: is =0 at every point of the surface of the disturbing solid; therefore no inte-

gration has to be performed over that surface. The triple integral in the second term

of the equation, viz.
— ({{(u—3)da dy dz,

may be simplified by considering that, because the integration extends throughout the
unlimited mass of the liquid, we have, by equation (46),

{(u—1)dz dy dz=0,
and consequently
~—(W(u—3)dz dy de=—{{{dx dy dz.

Now this is obviously the half difference, with the sign reversed, between the volume
of the indefinitely large cylinder or sphere, as the case may be, and the displacement
or volume of the disturbing solid, denoted by D. Moreover, in the first term of the
equation, we have dn=dr ; {do=rdf for a cylinder, or 277*sin 6dd for a sphere, § being
the angle which r makes with the axis of #; and the limits of integration are from =0
to §=2= for a cylinder, and from §=0 to é== for a sphere. Hence we have the fol-
lowing expressions :—For indefinitely deep cylindrical solids,

2 d D
ED_—_%X) (q)%——g)rde-l-@; 62
for solids of revolution, '

ED=%§7(¢%-%)2%¢2sin6d9+g- e e e (93)

In taking the values of ¢ and ‘—g corresponding to an indefinitely great value of 7, it

is to be observed that the distance 2a, or /44", between a given pair of foci, becomes
indefinitely small compared with 7, and that consequently, if F be a function of the
distance from a focus, and AF the difference of its values for a pair of foci whose distance
apart is 2a, we are to make

AF sensibly=—2¢ %
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Hence <observmg that ) we have for an indefinitely large cylinder,
)
(P:x—E.gé?f, l
p ok T (X3
¢ w+2 rgw;
and for an indefinitely large sphere,
2
¢=a—3. %‘? ,
d¢ z 2%z [ ' (59)
+2 ! ;}

in each of which expressions = denotes the summation of terms belonging to the several
pairs of foci, if there are more than one pair—each term containing its proper parameter,
k or k%, and its proper double excentricity, 2a(=a'+¢" when those two distances are
unequal).

Substituting cos 4 for '1:, the functions within brackets in the integrals of equations

(52) and (53) are found to have the following values:—

Cylinder:
dp r 29 1 o1 .
¢ - —g=r(cos’d—f—terms in 3 &c.). . . . . . . . (56)
Sphere : ‘
éﬁ &2 acosQB

——r(cos20—3—|—2

o4 —terms in % &e.).. . . (57)

o1 . 1 . . o .
The terms in pe! and higher powers of = Vanlsh, because of the indefinite increase of 7.

The terms in cos?d—% and cos’d—3 disappear from the integration. Hence the integral
in equation (52) vanishes altogether ; and that in equation (63) has for its value

™ kQ ‘26 . 2
%.,(o (YY) omrsintli=—F Ha; . .. .. (59)

so that we obtain finally, for ¢he ¢otal energy of disturbance per unit of velocity and of
density, if the disturbing solid is an indefinitely deep cylinder,

Ep=3D; . . . . . . . . .00 L (B9)

and if it is a solid of revolution,
4
ED:%(D—gzm). (60
The ratio borne by the total energy of disturbance to the energy of the disturbing solid

18—
for indefinitely deep cylinders,

2B, 4

D;...,.........(59A)
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for solids of revolution,

2ED_ 4x 2,y . ’
=1-2F.3ka; . . .. .. ... (604)

observing, in the last expression, that for any pair of foci whose distances from the origin
I

@ and " are unequal the mean of those distances, _g ,1s to be taken as the value of a.

When the d1sturb1ng solid is a sphere of the radius /, its dlsplacement is D= 4"ld

It has one focus at its centre, produced by the coalescence of a pair of foci; % becomes
indefinitely great, and @ indefinitely small; but their product has a finite value,

13 . .
lc2a=§. Hence in this case we have

2K, '
S S e T (B

that is to say, the total energy of the disturbance produced by a sphere is equal to half
the energy of the sphere.

‘When the solid is an oval or bifocal neoid of revolution, and the excentricity e increases
indefinitely as compared with the parameter %, the displacement approximates upwards
towards that of a cylinder of revolution of the length 2¢ and transverse section 274*
(that is, towards 4#4%a); so that in this case we have for the upper limit of the ratio of
the total energy of disturbance to the energy of the solid, the following value :—

2E
=t

For all neoids of revolution, oval and cycnoid, the ratio in question lies between the
limits 4 and §. Itsvalue in any particular case may always be determined to any
required degree of approximation by constructing the figure of the disturbing solid and
measuring its displacement. For example, in fig. 3 it is found to be, for the oval neoid
of revolution L. B, 0566 ; and for the cycnoid of revolution I/ B, 0'6 nearly.

The principles of this and the three preceding sections (§ 12, 13, and 14) are apph-
cable not only to bifocal, quadrifocal, and other stream-line surfaces having foci situated
in one axis, but to all stream-line surfaces which can be generated by combining a uni-
form current with disturbances generated by pairs of foci arranged in any manner what-
soever, or having, instead of detached focal points, focal spaces; the disturbance-functions
belonging to which are to be found by integrating the corresponding functions belonging
to the points contained in those spaces, a process similar to that of finding the potential
of a solid *.

§ 16. Disturbance of Pressure and Level—It is well known that in all cases of the
steady flow of a liquid, the sum of the height due to velocity, and the height due to
elevation and pressure combined, is constant in a given elementary stream; that is to

—%:%(600)

* Note by the Reporter.—See paper, Professor C. Neumawy, in Crerrr’s Journal for 1861, on the equation
du | d'u

2+dy

MDCCCLXXI. 25
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say, let &, be the head, or height due to elevation and pressure, in a given elementary
stream, at a point where the velocity is that of the undisturbed uniform current ; let V,
as before, denote that velocity, so that ¥V, vV, and wV are the components of the velocity
at any other point; then, at that other point, the head is given by the following equa-
tion,

2
h=ht o (l—w—vi—w?); . . . . . . . (61)
g
and the following difference may be called the disturbance of head,
VQ 2 2 2
k—-ho=2—y(1——u —v*—w’).

Some of the general consequences of this principle have been pointed out in the paper
¢« On Plane Water-lines” already referred to; and its bearing on the laws of the resist-
ance of ships has been shown in a paper “ On the Computation of the probable Engine-
power and Speed of proposed Ships,” published in the Transactions of the Institution
of Naval Architects for 1864.

In connexion with the subject of the present paper, it is sufficient to state that, when
a current of a perfect liquid of unlimited extent in all directions flows past a solid, the
disturbance of head takes the form of variation of pressure only, the energy of a given
particle of an elementary stream changing its form between energy of motion and energy
of pressure as the velocity varies—so that points of minimum velocity of current are
points of maximum pressure, and points of maximum velocity of current are points of
minimum pressure,—but that where the current is bounded above by a free upper surface,
exposed to the air, that surface continues to be everywhere a surface of uniform pres-
sure, and the disturbances of head take the form of disturbances of level, places of
minimum velocity being marked by a swell, and those of maximum velocity by a hollow.
For example, when a floating solid body, as a ship, moves through still water, the surface
of the water is raised at those points where the particles of water are pushed or drawn
ahead by the ship, and depressed at those points where they run astern past her sides in
order to fill up the space in her wake.

The aggregate disturbance of head throughout the whole liquid mass is expressed as
follows,

Ve
W—hdady de=—F Bo, . . .. (62)

being obviously equal, but of contrary sign, to the total energy of disturbance per unit
of density (see equation 47 A).
Let the whole volume of the liquid mass be denoted by L={{{dz dy dz; then

Wt=h)dzdydz  VE,
Misdys =~ N (L)

291
‘expresses a depression of the centre of gravity of that mass relatively to the surface of
the liquid at an indefinite distance from the disturbing solid—in other words, an eleva-
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tion of the surface of the liquid at an indefinite distance from the solid above the centre
of mass of the liquid; so that the disturbance of head at any point relatively to that
centre of mass is expréssed as follows :—

VE, .
bbbt (6

The last term vanishes when the volume of liquid L increases indefinitely.

When the trace of a disturbing solid, together with its external stream-lines and lines
of disturbance, has been drawn, as in figs. 2 and 3, the manner in which the disturbances
of motion and of head vary at different points may be represented to the eye by means
of a diagram like fig. 5, constructed as follows. Draw a straight line A B to represent
the velocity of the undisturbed current (equal and opposite to the velocity of the ship).
From A draw a series of straight lines, such as A C, A C, A (', parallel to a series of
tangents at a series of points in the trace of the solid. From B draw a series of straight
lines, such as BC, BC', B C", parallel to the tangents of the lines of disturbance at the
same series of points, cutting the first-mentioned series of lines in C, ¢!, C", Then in
each of the triangles in the diagram, such as A B C, corresponding to a given point in the
trace of the solid, B C will represent the direction and velocity of the disturbance, A C
the direction and velocity of the elementary stream of liquid relatively to the solid; and
ABQ—ACg.

29

At the points marked L and L/ in figs. 2, 3, and 4, the disturbance of head is simply
the height due to the velocity of the disturbing solid.

‘When the disturbances of head, as in a liquid with a free upper surface, take the form
of disturbances of level, they produce two effects—alteration of the forms and motion of
the elementary streams, and the formation of waves; which waves may give rise to a
particular kind of resistance. In the present paper it is assumed that the dimensions of
the disturbing solid are so large, or its motion so slow, that the effects of the disturbances
of level on the forms and motions of the elementary streams may be neglected; and the
investigation in the ensuing sections is confined to the action of those disturbances in
producing waves and wave-resistance.

§ 17. Virtual Depth and Speed of Waves.—The term virtual depth of longitudinal
disturbance, or, more briefly, virtual depth, is used to denote the depth found by inte-
grating the velocity of longitudinal disturbance throughout a vertical column of a liquid
mass, and dividing the integral by the value of that velocity at the free upper surface of
the mass. For example, let w—1 be the velocity of longitudinal disturbance in a given
indefinitely slender vertical column at the depth z, and u,—1 its value at the surface ;
and let Z be the virtual depth; then ‘

the disturbance of head, positive upwards, will be expressed by

g={e=DE L (65)
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when the column is a prism of finite dimensions, the mean virtual depth is as follows :—

g _We=Ndedydz g
" SS(ul —1)dz dy
~When the disturbance is that produced by the longitudinal advance of a solid whose
figure is a stream-line surface of revolution, with any number of pairs of foci, floating
immersed to the axis in a liquid of indefinite depth, the integrations indicated in the
preceding equations give the following results:—
Virtual depth at a given point,

a—z a4tz
. ()
—2k2<a-—-x a+.z'>’ ’

3 3
7', 7'2

(67)

the notation being the same as in equations (48) and (49).
Mean virtual depth throughout the whole mass,

Zo=%5 . . . . (68)
in which D is the displacement of the floating solid, and S the area of its wafer-section
(that is, of its horizontal section in the plane of the surface of the water); so that the
mean virtual depth is equal simply to the mean depth of immersion of the solid. Here
it must be explained that, when the disturbances relatively to the centre of mass of the

liquid are integrated, equation (68) takes the form Z,=9, and that the value gis

obtained by taking the disturbances relatively to the common centre of mass of the
liquid and solid.
At the two ends of the floating solid, where =17 and y=0, the virtual depth takes
the following value, :
s ke
'Zé——ag .
lym——oroo—. . . .. ..o (69)

2

B— g2
2l

When there is but one pair of foci, this is reduced to

At the midship section (B and B' in the figures) the virtual depth is

ka
HPCIpY
Ty=—>==>th L (T0)

Yoo k2a >

(4t

9, being the extreme half-breadth. 'When there is but one pair of foci, this becomes
simply /@ +3.
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For the disturbance caused by a sphere, half immersed, equation (67) takes the fol-

lowing form, 2 eoh1
cos“0—

L=r.331=75 (71)

in which 7 is the horizontal distance from the centre of the sphere, and 4 the angle that
r makes with the axis of #; and the same value of Z is approximated to at distances
from a disturbing solid of any figure which are very great compared with the dimensions
of the solid.

The following examples are calculated for the oval neoid of revolution LB, and for
the cycnoid of revolution I'B', shown in fig. 3, the unit of measure being one tenth part
of the distance from the axis OX to the nearest of the straight lines that are parallel to
it,—also for a sphere of the radius 1.

Oval. Cycnoid. Sphere.
Half-length 7 . . . . 64 95 1
Extreme half-breadth yo._greatest} 26 316 1
depth of immersion .o
Mean virtual depth Z,, . . . . 191 205 2
Virtual depth atends Z, . . . . 132 135 3
Virtual depth amidships Z,, . . . 555 624 ° 1

When a wave of @ given length travels in water of unlimited depth, the virtual depth
of disturbance is equal to the radius of a circle whose circumference is equal to the
length of the wave. For a wave of a given periodic time, in water of unlimited depth,
the virtual depth is equal to the height of a revolving pendulum which makes one revo-
lution in the period of a wave. For a wave travelling ot a given speed, under all cir
cumstances whatsoever, the virtual depth is twice the height due to the speed; and con-
versely, for a given virtual depth, under all circumstances, the speed is that acquired
during a fall through half the depth. (See Proceedings of the Royal Society, 16th_
April, 1868, page 345.) These laws are expressed as follows. Let W be the speed of
advance of a wave in a horizontal direction perpendicular to the line of its crest, A its
length, T its period; then we have
in water of any depth, limited or unlimited,

Wi=¢Z; e e (72)

and in water of unlimited depth,
Z
T=2xA/=; . . . . . . . . . (72
\/? L (129)

A=WT=2+7Z;. . . . . . . . . (728)
and therefore

2__9*,

Wi=2-; . . . . S (72 c)

w=4L . . ... (12D)

2
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0 18. Probable Laws of Wave-resistance.—1It has been proved by observation that a
floating solid, such as a ship, is accompanied by waves, originating in the disturbances
which it produces in the level of the water. None of those waves (at all events none
whose energy is appreciable) travel faster than the floating solid. Some travel at the
same speed, and some slower—each wave having its velocity in a direction normal to its
crest regulated by its virtual depth, according to equation (72).

Those waves may be divided into three classes. The first class, whose properties were
pointed out by Mr. Scort RUSSELL about twenty-five years ago, have a speed, and there-
fore a virtual depth, depending on the periodic time which elapses between the raising
of a swell by the fore body and after body of the vessel respectively.

In the second class the virtual depth is regulated by the mean virtual depth of the
whole longitudinal disturbance (68)—that is, by the mean depth of immersion of the
vessel ; the existence of these waves has been proved by observations of several actual
vessels, some of which are described in a paper read to the British Association in 1868
(see the Reports for that year, p. 194 ; also the Transactions of the Institution of Naval
Architects, 1868, p. 275; and the ¢ Engineer’ for the 28th August and 30th October,
1868).

The waves which-have been found by observation most distinctly to follow this law,
are a pair of diverging waves which closely follow the stern of the vessel.

The third class of waves appear to depend on the several virtual depths of disturbance
at various points in the neighbourhood of the vessel, especially at and near the bow.
They diverge at various angles; and travelling into water in which the virtual depth
increases, they become accelerated, so that their ridges are gradually curved forward.
The general theory of this class of waves has been stated in the papers already referred
to in connexion with the second class; but, so far as I know, they have not yet been
subjected to exact observation, for which perfectly smooth water is necessary.

When a wave accompanies a disturbing body whose speed is greater than that of the
wave, the direction of advance of the wave, which is perpendicular to its ridge-line,
adjusts itself so as to make with the direction of advance of the vessel an angle whose
cosine is the ratio borne by the speed of the wave to the speed of the ship; that is to
say, let W be the speed of the wave, V that of the ship, « the angle of obliquity of the
advance of the wave, then

w
cosa:v...........(73)

(see Transactions of the Institution of Naval Architects for 1864, vol. v. p. 321; also
‘Warrs, RANKINE, NAPIER, and BARNES, on ¢ Shipbuilding,’ p. 79). The effect of the
divergence of a wave is to disperse, to distant parts of the water, a certain quantity of
energy which is never restored to the vessel, and thus to cause a kind of resistance which
may be called wave-resistance. 1t has been suggested, as a probable law of the rate at
which a diverging wave disperses energy; that this rate is proportional to the éreadth of
new wave raised in a second; which breadth is equal to the speed of the vessel multiplied
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by the sine of the angle of obliquity of the wave; that is,

Vsine=a//V?—W?; . . . . . . . . . (14
and if this be correct, the resistance arising from the dispersion of energy by a set of
waves of a given speed may be expressed as follows :—Let R’ be the propelling force which
would be required in order to produce the disturbance constituting the wave-motion, if

the whole of the energy of that motion were dispersed; then the actual propelling force
required in order to restore the energy dispersed by those waves will be

Rsina=R'.{/ (1-‘(,—@). . (75)

The total wave-resistance of a ship, according to this hypothesis, is the sum of a set
of terms similar to the above expression, each term belonging to a different set of waves
and containing its proper values of R’ and of W'.

Each value of R’ is probably proportional to the square of the speed of the ship, and
to some function of her dimensions and of the position of that part of her where the
set of waves in question originates, and may therefore be expressed in units of weight

by 5";755, where  is such a function, and ¢ the density of the water. Hence the total

wave-resistance may be expressed as follows:

2.R’sina=%g.2{m\/(1—$)}. L)

For waves of the first class the value of W is that given by equation (72 p), the period
T, being expressed as follows,

T=thds

where /, and /, are the lengths of the fore body and after body respectively, and f; and £,
two coefficients, depending on the forms of those bodies. From the practical results of
‘the rules given by Mr. Scorr RuUSSELL, there seems to be reason to believe that those
coefficients are sensibly equal to, or not very different from, the coefficients of fineness,
found by dividing the displacement of the fore body and after body respectively by the
area of midship section. The speed of waves of the first class is thus given by the fol-
lowing formula,

h+fol.
LA N ()

and in order that such waves may not disperse energy by their divergence, it is necessary
that W, should be equal to or greater than V ; that is to say, that

j;l,+j;l,=or>gf::.. e e (19)

It a.ppeafs further, from results of practice, that it is advisable that the two terms of
the left-hand member of this equation should be equal to each other; that is to say,

Fh=fl=or>m0 L (80)
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and if we make fi=1} and f,=%, this becomes Mr. Scorr Russerr’s rule for the least
lengths of fore and after body suited to enable a ship to be driven economically at a
given speed.

It is well known that in water that is shallow, compared with the length of a wave,
waves of a given period are retarded according to a certain law (see ARy on Tides and
Waves). Hence the fact, which has often been observed, that a length which is sufficient
for a given speed in deep water, becomes insufficient in shallow water—the waves of the
first class becoming divergent, and the swell under the after body lagging behind, so as
to make the stern of the vessel “squat,” as it is called.

For waves of the second class, the value of W is given by equation (72), putting for
7 the value given by equation (68)—that is, the mean depth of immersion D =S. Hence
we have

We=a/%25 . . L (8D
and this is probably unaltered in shallow water. The period of these waves is the same
with that of the dipping, or vertical oscillation of the ship, whose value in deep water

is
D
T2=29r\/g-§............(82)

Waves of the third class are observed to have, as theory indicates, a great angle of
obliquity at and near the bow of the vessel, gradually diminishing as they travel to more
distant masses of water where the virtual depth is greater. Beyond this general agree-
ment, their precise laws are not yet known, for want of a sufficient number of precise
observations.

The general nature of the phenomena of wave-resistance, as indicated both by theory
and by observation, are as follows. When either the speed of the vessel is so small, or

her dimensions so great, as to make the ratio ‘%r of the speed of each set of waves to

that of the vessel greater than.or equal to unity, in other words, to make the ratio
\/ (1-—Vg) of the breadth of new wave raised per second to the speed of the ship

nothing or imaginary, there is no wave-resistance, and the only resistances to be over-
come in driving the ship at a uniform speed are that due to stiffness or viscosity, and
that due to friction or ‘skin-resistance.” The first of these increases simply as the
speed; and at the velocities usual in navigation, it becomes almost inappreciable when
compared with the resistance due to friction. At very low speeds it is the principal
resistance. Its laws have been fully investigated by Mr. Stoxes.

The resistance due to friction increases sensibly as the square of the speed. Some
remarks on this kind of resistance will be added in the next section.

So soon as the ratio v W becomes less than unity for any set of waves, wave-resistance
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begins to be felt, and shows its nature by increasing more rapidly than the square of
the speed; and its effects become more and more conspicuous as additional sets of waves
come successively into operation as means of dispersing energy.

When the speed of the disturbing body becomes so great that, for all or for most of the

sets of waves, the ratio %r— becomes a very small fraction, the whole, or nearly the whole

of the energy of disturbance is dispersed and wasted, and wave-resistance becomes the
principal, or it may be the only appreciable resistance. In this extreme case it is
possible to make a theoretical estimate of the amount of that resistance, as follows.
The whole energy of disturbance is expressed, in absolute units, by

V2EED7
a function of which values have been given in equations (47 4), (53), (60), &c.
The total dispersion of that quantity of energy, and its reproduction by the disturbing

action of the solid, may be considered as taking place while the midship section M sweeps
through a space equal to the displacement D of the solid—that is, while the solid

advances through the distance —1%; and hence the propelling force required to overcome

wave-resistance will probably have the following value, in units of weight,

1 V%EpM |
sR=SE0M L (89)

and the resistance will again increase as the square of the velocity.
The only solid of continuous figure on which experiments have been made suitable
for comparison with this formula is the sphere. For that body, equation (608) informs

2E : ; . .
us, we have _Dﬂ =4, and E‘DP- =1 therefore the extreme wave-resistance 1s

SR=VM, L (83

that is to say, it is equal to the weight of a columm of liguid of half the height due to the
speed, on a base equal to the midship section,—a result which agrees very closely with ex-
periment.

Since a propelling instrument which acts by the reaction of the water, as a paddle,
a screw, an oar, or a jet, drives the particles of water astern, it tends to diminish the
height of the crest of a wave, and to increase the depth of a trough or hollow;—in
the former case diminishing, and in the latter increasing the energy of the wave, which
partly goes to waste in the case of divergence; and hence it follows that it is favourable
to economy of power that such a propelling instrument should act on the crest, rather
than on the hollow of a wave. This fact is well known in practice.

The production of diverging waves is not prevented by totally submerging the dis-
turbing body; but those waves are of less height at the surface of the water, the more
deeply the body is covered. The virtual depth, and consequently the speed, of the waves
of the second and third classes increases, and their angle of divergence diminishes, with

MDCCCLXXIL. 2T
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increased submergence of the body; but the speed, and consequently the angle of diver-
gence, of the waves of the first class is unaltered, because they depend on the time occu-
pied by the solid in moving through a certain portion of its length.

§ 19. Remarks on the Skin-resistance.—It is well known through observation :—that
the friction between a ship and the water acts by producing a great number of very
small eddies in a thin layer of water close to the skin of the vessel, and also an advancing
motion in that layer of water; that this frictional layer (as it may be called)is of insen-
sible thickness at the cutwater, and gradually increases in thickness towards the stern,
by the communication of the combined whirling and progressive motion to successive
streams of particles; and that, finally, the various elementary streams of which the fric-
tional layer is composed, uniting at the stern of the ship, form her wake—that is, a steady
or nearly steady current, full of small eddies, which follows the ship, but at a speed
relatively to still water which is less than the speed of the ship.

The central stream of the wake has the greatest velocity ahead; and other parts of it
have velocities diminishing from the centre towards the circumference. If the friction
between the water and a given area of the skin of the ship is equal to that of an equal
area of one layer of water upon another at a given velocity, the mean forward velocity
of the whole wake relatively to still water, and its mean backward velocity relatively to

“the ship, are each of them equal to one half of her speed.

The effect of discontinuity of form, as when the figure of the vessel presents angles to
the water, is to produce eddies which are dragged along with the ship, and thus to add
to the wake; and hence the resistance arising from discontinuity of form is analogous
in its laws to that arising from friction; and both those forces are comprehended under
the name of eddy-resistance. Bodies of discontinuous forms, however, are foreign to the
subject of this paper.

Let V, as before, be the velocity of the ship; let W' denote the mean velocity of the
wake, and C its area of cross section, both taken at a distance astern of the vessel suffi-
cient for the wake to have become a steady forward .current. Let R be the amount of
the skin-resistance in units of weight, and g the density of water. Then the mass of
water added to the wake in each second is §C(V—W'); and the velocity impressed on
that mass by the force R is W'; whence we have the following equation,

R:%.QC(VW'—-W"“); N (1))

and if the mean velocity of the wake is half the velocity of the ship, that equation becomes
Ccv2 : .
R:g‘;{y—-............(84A)

It is obvious from equation (84) that, for a given amount of skin-resistance, the wake
has the least possible sectional area when its mean speed is half that of the ship.

The work done by the ship on the water per second in producing the wake is RV ;
the actual energy of the current of the wake is increased in each second by the amount

C WIQ.
%— (V=W
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and the difference between those quantities—that is,
C W’Q C WIQ
RV &2 (VW) T.—:%(V—W’)(VW’——2~>, ... . (84B)

is the energy added to that of the eddies in each second. If, as before, we have
=1V, the preceding equation takes the following value,

RV_EC_IEVL L (840)

so that one fourth of the work of friction is expended in producing the current in the
wake, and the other three fourths in producing eddies.
If the velocities V and W' of the ship and her wake, and the amount of eddy-resist-
ance R, are given, the sectional area C of the wake may be calculated from equation (76).
The elementary streams of which the wake is composed move astern relatively to the
ship with a velocity less than that of an undisturbed current in the ratio expressed by
Y_—VV_V' ; and hence they occupy a transverse area greater than they would do in the un-

disturbed state in the ratio expressed by
\J W/

V—:W=1+W,..........(85)
which, when W'=1V, becomes =2. 'This causes a certain modification in the forms of
the stream-lines outside the wake, which might be represented by taking for the surface
of an imaginary disturbing solid a surface midway between the skin of the vessel and
the outer surface of the frictional layer, followed by an indefinitely long cylindrical tail
of one half of the sectional area of the wake; but the detailed investigation of this will
not now be entered on.

Mr. FroUDE a few years ago pointed out that the most perfect propeller for driving a
ship against skin-resistance, would be one which should act solely on the particles of the
wake, driving them astern so as just to take away their forward velocity and no more.
The velocity of such a propeller relatively to the ship would be equal and opposite to
her speed V; and the energy expended in working it would be simply RV, equal to the
work done by the ship, through friction, on the water. It would thus be a propeller
free from ¢slip” and free from waste of power. It would stop the following current in
the wake, and would at the same time impress on the water an additional quantity of
energy in the form of eddy-motion, equal to the energy taken away in stopping the
current; so that the total energy impressed on the water in each second would be the
same as before. -

It would preserve to the stream-lines the shape which they would have in the absence
of friction.

A propeller of the most efficient kind possible, producing the same forward thrust R,
by acting on prev1ously undisturbed water so as to impress a backward velocity W" on a
current of the sectional area B, would move it astern relatively to the ship with the

212
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velocity V4+W"; and besides expending in each second the quantity of energy RV in
driving the ship ahead, it would expend the additional quantity RW" in driving the
water astern. The relation between the sectional area and the velocity of the current
produced by such a propeller is given by the following equation, -

R:%V+W~)W~, o (88)

because ¢B(V -+ W") is the mass of water acted on in each second, and W" the velocity
impressed on it. The counter-efficiency, being the ratio in which the total work done
exceeds the useful work, is
wi
-l-—v"(86A)
In previous writings* it has been shown that the amount of skin-resistance is pro-
bably expressed by a formula of the following kind,

\& \
R="¢ -ﬂgadw; N (10

in which dw is the area of an elementary portion of the skin of the ship, g= v/ (¥’ +v*+w?)
the ratio borne by the velocity with which the particles of water glide over that elemen-
tary area, to the velocity of the ship (V), ¢ the density of water, and = a coefficient of
friction, whose value, as deduced from the performance of actual ships, is about -0036
or *004 for a clean surface of painted iron.

The integral ([g°dw is called the augmented surface; and the ratio

1

.
.Sﬂéd:............(su)

is called the cogfficient of augmentation. The denominator, {Gda, is what may be called
the girth-integral, G denoting the im'mersed girth of a given cross section of the vessel.
The augmented surface and coefficient of augmentation can be calculated for any parti-
cular stream-line surface by drawing it, constructing such a diagram as that shown in
fig. 5, and finding approximate values of the definite integrals by SiMpson’s Rules; but
to give exact general symbolic expressions for them involves difficulties which have not
yet been overcome.
The following are particular cases in which exact expressions have been found :—

Indefinitely deep circular cylinder of radius /, g=2sind;
Augmented surface per unit of depth, 2137;

Coefficient of augmentation, 4& =53 nearly.

Sphere of radius /, ¢g=4% sin ¢;

* Philosophical Transactions 1863, p. 184 ; 1864, p. 384 ; Civil Engineer and Architect’s Journal, October
1861 ; Transactions of the Institution of Naval Architects for 1864, vol. v, p. 322 ; Shipbuilding, Theoretical
and Practical.
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Augmented surface, §37°* =257 nearly ;
Girth-integral, {Gdo=7"F=9-87F nearly ;
Coefficient of augmentation, §5=2-531 nearly.

In each case ¢ denotes the angle made by a given radius with the direction of motion.

For a sphere half-immersed the augmented surface and girth-integral have respect-
ively half the values given above.

For an approximately trochoidal riband of uniform breadth, it has been elsewhere
shown (Philosophical Transactions, 1863, p. 134) that the coeflicient of augmentation is
very nearly 144 sin® 3+ sin*@, 3 being the angle of greatest obliquity of the riband to
the direction of motion.

With a view to the calculation of the augmented surface by numerical definite inte-
gration in particular cases, the following values of the elementary surface dw and of its
first integral are given. As to the function y, see § 3.

General case:

do= v {dy*d2? +d22da*+de*dy?y. . . . . . . (88)

Cylindrical surface of indefinite depth ; dw per unit of .depth =Z? .. o . . (884
Surface of revolution, ka{f-émmersed;. fdw for a zone or belt measuring dw}

P

0 20. General Remarks—The dynamical investigations contained in this chapter are
partly certain and exact, partly approximate, and partly conjectural. The results
arrived at in §§ 12 to 15 as to momentum and energy of current and of disturbance, are
all certain and exact when applied to the case of a solid body of any figure past which
a fluid can glide continuously, immersed in an unlimited mass of liquid, and ap-
proximate when applied to cases such as those described in § 16, in which these con-
ditions are approximately fulfilled. The results as to virtual depth of disturbance, and
as to speed of waves, in § 17, are partly exact, and partly approximate. The probable
laws of wave-resistance and of skin-resistance, in §§ 18 and 19, are partly conjectural,
and require the aid of much additional experimental research to test and verify them,
and to make them definite; but still they have already to a certain extent been verified
by observations of the performance of ships. The whole body of results, whether certain
or conjectural, are set forth in the hope that they may prove useful in deducing general
principles from the data of experiment and observation, and in suggesting plans for
further research.
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1. Addendum to § 16.—Points of no Disturbance of Pressure. Mr. BErraoN’s Log.
—The points in the surface of the disturbing solid, and elsewhere, at which there is no
disturbance of pressure, are given by the equation

F=w+or+w=1l. . . . . . . . . . . (a)
Such points can be found graphically for a given stream-line surface, by constructing a
diagram such as fig. 5, and finding by trial the points for which AC=AB.

At the surface of a sphere it is easily shown that we have

=%sind; . . . . . . . . . . . . (b)

in which 4 is the angle made by a radius of the sphere with the direction of motion.
Hence, on the surface of a sphere, the points of no disturbance of pressure are contained
in the circle given by the equation

0= sin"'2=41° 69 nearly.

In February 1850 there was communicated to the Royal Society a paper by the
Reverend E. L. BertaON, describing an instrument invented by him, called a “hydro-
static log;” and a more detailed account of that invention was read by Mr. VAvGHAN
PENDRED to the Society of Engineers on the 6th of December 1869. One part of that
instrument consists of a vertical cylindrical tube, with a closed flat bottom, and having,
in the front part of the cylindrical surface, near the bottom, a small hole, whose angular
position, relatively to the direction in which the tube is moved through the water, is so
adjusted that the pressure of the water outside produces no disturbance of the level of
the column inside the tube. Mr. BERTHON ascertained solely by experiment the * zero-
angle” or “neutral angle,” as it has been called, and found it to be 41° 30'—a result
with which the theoretical value for a sphere agrees almost exactly. That agreement
shows that the disturbance in the water caused by the short vertical flat-bottomed
cylinder employed by Mr. BERTHON was sensibly identical with that produced by a
sphere, and also that, from the foremost points of the tube, as far round each way as
the zero-angle, the disturbance of pressure was not sensibly affected by wave-motion,
viscosity, or friction.

11. Addendum to § 17.—Interference of Waves. It was suggested to me by Mr. WiL-
LiaM FROUDE, in a letter dated the 11th November, 1869, that one of the circumstances

-in the figure of a vessel on which the smallness of wave-resistance depends, is the inter-
ference of waves originating at different parts of the vessel’s surface, so as wholly or
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partially to neutralize each other. Suppose, for example, that ata certain point (which
may be denoted by A), at or near the bow of the ship, there is a disturbance producing
a wave-ridge. This first ridge is followed by a series of other wave-ridges, at distances
apart depending on the period and virtual depth of the original disturbance, and di-
verging at an angle depending on the ratio borne by the speed of the waves to the speed
of the ship. .

Mr. FroUDE remarks, as an observed fact, that the second wave-ridge of the series is
that which appears to carry away the most energy. This wave-ridge is in contact with
the side of the vessel at a point which we may call B, at a distance astern of A depending
on the dimensions and position of the waves. Suppose, now, that the surface of the
vessel is so shaped that the disturbance impressed by it on the water has a tendency to
produce a wave-trough at B; this disturbance will, to a certain extent, neutralize, by
interference, the disturbance originating at A ; that is, to use Mr. FRouDE’s words, the
wave-troughs originating at B will ¢ swallow” the second and following ridges of the
series of waves originating at A, leaving unaltered the first wave-ridge only of that series
—thus diminishing the quantity of energy which is carried away by diverging waves.
It is obvious that the greatest effect of the interference of two given series of waves can
be realized at one particular speed of the ship only, because of the influence of the
- speed of the ship on the positions of the waves; and this may account for the dimi-
nutions of the rate of increase of resistance with speed which occur at certain particular
velocities of a given vessel. Asregards this and many other questions of the resistance
of vessels and of the motions which they impress on the water, a great advancement
of knowledge is to be expected from the publication in detail of the results of the expe-
riments on which Mr. FroUDE has long been engaged.
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